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e.g. λ-calculus, computational λ-calculus, predicate logic



x1 : τ1, …, xn : τn  ⊢  t : τ

Examples

Monoid action x : M, a : A  ⊢  x • a : A

Integration f : R → R  ⊢  ∫x f(x) dx : R

Typing judgements
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T(Γ)

S(Γ)

Term-typing structure

τΓ

presheaf of terms (in context Γ)

We consider presheaves 𝒞op → Set on a cartesian context structure (𝒞, S), 
fibred over S.

presheaf of types (in context Γ)

assignment of types to terms



constant presheaf of types

T(Γ)

S

Term-typing structure

τΓ

presheaf of terms (in context Γ)

We consider presheaves 𝒞op → Set on a cartesian context structure (𝒞, S), 
fibred over S.

assignment of types to terms



Terms with a specified type

NB. The fibre Tσ is the set of terms with type σ.

Tσ T

1 S
σ

τpb



                V = ⨿ y⟨σ⟩

 S

Presheaf of variables

ν

For any context Γ ∈ 𝒞, V(Γ) is the set of variables in Γ.

σ∈S

def
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Models of simple type theory

Γ ⊢ op(t) : Op(τ)

term operators

τ → σ | τ × σ | T(τ) | ...

type operators

(t1, t2) | π1 t | t1 t2 | λ(x) t | ...



Algebraic structure on types

Type structure is as in universal algebra. For instance, the following operators

τ → σ | τ × σ | T(τ) | U

induce a signature endofunctor on Set

Σty = X ↦ X2 + X2 + X + 1

the algebras for which are sets S with the appropriate structure

[⟦ →⟧, ⟦×⟧, ⟦T⟧, ⟦U⟧] : Σty S → S

(NB. These signature functors are polynomial.)
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Polynomials & polynomial functors

In a locally cartesian-closed category ℰ, a polynomial is a diagram:

The polynomial functor associated to the polynomial is given by:

Σh Πg f* : ℰ/A ⟶ ℰ/D

A ⟵ B ⟶ C ⟶ D
f g h



We will consider polynomials in Psh(𝒞), inducing polynomial functors
Psh(𝒞)/S → Psh(𝒞)/S, where (𝒞, S) is a cartesian context structure with 
algebraic structure ΣtyS → S.

Let P be a polynomial in Psh(𝒞). Algebras for the corresponding polynomial 
functor are bundles τ : T → S together with morphisms as in the following.

FP(    ) ⟶ (    )
T

S
τ

T

S
τ

Polynomials & polynomial functors

⟦P⟧



Algebraic structure & natural deduction

Γ ⊢ a : A        Γ ⊢ b : B

Γ ⊢ pair(a, b) : Prod(A, B)
Prod-ɪɴᴛʀᴏ
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Γ ⊢ a : A        Γ ⊢ b : B

Γ ⊢ pair(a, b) : Prod(A, B)
Prod-ɪɴᴛʀᴏ
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Γ ⊢ a : A Γ ⊢ b : B

S ⟵ S × S + S × S ⟶ S × S ⟶ S
⟦Prod⟧

in Psh(𝒞)
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Algebraic structure & natural deduction

S ⟵ S × S + S × S ⟶ S × S ⟶ S
∇2

⟦Prod⟧[π1, π2]

T × T T

S × S S

⟦pair⟧

⟦Prod⟧

τ × τ τ

polynomial

functor algebra

Γ ⊢ a : A        Γ ⊢ b : B

Γ ⊢ pair(a, b) : Prod(A, B)
Prod-ɪɴᴛʀᴏintroduction rule

in Psh(𝒞)
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Binding algebraic structure & natural deduction

Γ, x : A ⊢ t : B

Γ ⊢ abs(x : A . t) : Fun(A, B)
Fun-ɪɴᴛʀᴏ

S ⟵ V × S ⟶ S × S ⟶ S

one variable one term

A B

⟦Fun⟧

in Psh(𝒞)



Binding algebraic structure & natural deduction

Γ, x : A ⊢ t : B

Γ ⊢ abs(x : A . t) : Fun(A, B)
Fun-ɪɴᴛʀᴏ

S ⟵ V × S ⟶ S × S ⟶ S

types of variables
⟦Fun⟧ν × id 

in Psh(𝒞)



Binding algebraic structure & natural deduction

Γ, x : A ⊢ t : B

Γ ⊢ abs(x : A . t) : Fun(A, B)
Fun-ɪɴᴛʀᴏ

S ⟵ V × S ⟶ S × S ⟶ S
ν × id ⟦Fun⟧π2

A B

term sort

in Psh(𝒞)



Binding algebraic structure & natural deduction

⨿ TB(Γ · A) T(Γ)

S × S S

⟦abs⟧Γ

⟦Fun⟧Γ

τΓ

S ⟵ V × S ⟶ S × S ⟶ S
ν × id ⟦Fun⟧

A, B ∈ S

π

in Psh(𝒞)

π2

Γ, x : A ⊢ t : B
Fun-ɪɴᴛʀᴏ

Γ ⊢ abs(x : A . t) : Fun(A, B)

polynomial

functor algebra

introduction rule



Algebraic structure & natural deduction

The natural deduction rules corresponding to introduction/elimination can be 
described by a second-order arity (describing the typing and binding data for 
each argument).

Each second-order arity induces a polynomial in Psh(𝒞).

The algebras for their associated polynomial functors are presheaves with the 
corresponding (typed & binding) term structure.

We can collect the arities into a term signature Σtm, which itself induces a 
polynomial.

(NB. We're using the same notation for a signature and the polynomial functor 
it induces.)
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Model homomorphisms

h : S → S' a Σty-algebra homomorphism

H : 𝒞 → 𝒞' a structure-preserving functor

f : T → H⭑(T') a morphism in Psh(𝒞)/S preserving the 
Σtm-algebra structure

(S, 𝒞, ε, ⟨–⟩, – × ⟨=⟩, T, τ, ⟦–⟧ty, ⟦–⟧tm) ⟶ (S', 𝒞', ε', ⟨–⟩', – × ⟨=⟩', T', τ', ⟦–⟧'ty, ⟦–⟧'tm)



Model homomorphisms

h : S → S' a Σty-algebra homomorphism

f : T → H⭑(T') a morphism in Psh(𝒞)/S preserving the 
Σtm-algebra structure

ΣtyS

S S'h

ΣtyS'
Σtyh

ΣtmT

T 𝖍(T')f

Σtm𝖍(T')
Σty f

𝖍(Σ'tmT')

where 𝖍 = h*(– H)



Syntactic models of simple type theory

For any given term and type signature, we want a model of simple type theory 
freely generated by the syntax.

The model freely generated by the syntax is exactly the initial model.

Since we have no type dependency, we can construct the initial model 
piecewise.

Σty Σtm syntactic model
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Initial models of simple type theory

● _S_ initial Σty-algebra

● as in universal algebra

● _(𝒞, ε)_ free cartesian category on _S_

● concretely, the opposite of the comma category

● (𝔽 → Set) ↓ (𝟙 → Set)

● _(T, τ)_ initial Σtm-algebra

● using Adámek's initial algebra construction

S



There's one last thing...
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Substitution

Γ ⊢ t [u/x] : τ

an algebraic operation on terms
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subst

Γ, x : A ⊢ var(x) : A
var



Substitution

Γ, x : A ⊢ t : B        Γ ⊢ u : A

Γ ⊢ subst(x : A . t, u) : B
subst

Γ, x : A ⊢ var(x) : A
var

S ⟵ 0 ⟶ V ⟶ S
ν

S ⟵ V × S + S × S ⟶ S × S ⟶ S
ν × id + id π2[π2, π1]



Substitution

Γ, x : A ⊢ t : B        Γ ⊢ u : A

Γ ⊢ subst(x : A . t, u) : B
subst

Γ, x : A ⊢ var(x) : A
var

subject to equational laws…



Initial models of simple type theories with substitution

Σty Σtm
syntactic model

with substitution



Initial models of simple type theories with substitution

Σty

Σtm
syntactic model

with substitution

Σsubst
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Q. What is a simple type theory?

A. An initial model

(𝒞, T ⟶ S, ⟦-⟧ty, ⟦-⟧tm + subst)
τ

A partial answer

We can now construct the classifying category and equational 
logic...



Conclusion

● Models of simple type theory consist of structures for contexts, typed 
terms and algebraic structure.

● Natural deduction rules that present simple type theories can themselves 
be presented by polynomials.

● The initial model of simple type theory is the syntactic model of the type 
theory, and can be constructed explicitly with a free algebra construction.

● We can construct the syntactic model with substitution, from which we 
can derive a classifying category, demonstrating that the type theory is its 
internal language.


