
Algebraic simple type theory
A polynomial approach

Nathanael Arkor & Marcelo Fiore

Department of Computer Science and Technology
University of Cambridge

Category Theory 2019

What is a type theory?

What is a type theory?

system of
mathematical

proof

What is a type theory?

system of
mathematical

proof

specification
for a

programming
language

What is a type theory?

system of
mathematical

proof

internal
language of a

category

specification
for a

programming
language

Algebraic type theory

categorical algebra

typing / sorting

binding

polymorphism

dependency

Algebraic simple type theory

categorical algebra

typing / sorting

binding

polymorphism

dependency

e.g. λ-calculus, computational λ-calculus, predicate logic

x1 : τ1, …, xn : τn ⊢ t : τ

Examples

Monoid action x : M, a : A ⊢ x • a : A

Integration f : R → R ⊢ ∫x f(x) dx : R

Typing judgements

contexts terms and types

x1 : τ1, …, xn : τn ⊢ t : τ

contexts terms and types

x1 : τ1, …, xn : τn ⊢ t : τ

Cartesian context structures

S ∈ Set the sorts, or types

𝒞 ∈ Cat the variable contexts

ε (terminal) ∈ 𝒞 the empty context

⟨–⟩ : S → 𝒞 types as contexts

– × ⟨=⟩ : 𝒞 × S → 𝒞 context extension

e.g. any cartesian category

Cartesian context structures

S ∈ Set the sorts, or types

𝒞 ∈ Cat the variable contexts

ε (terminal) ∈ 𝒞 the empty context

⟨–⟩ : S → 𝒞 types as contexts

– × ⟨=⟩ : 𝒞 × S → 𝒞 context extension

e.g. any cartesian category

Cartesian context structures

S ∈ Set the sorts, or types

𝒞 ∈ Cat the variable contexts

ε (terminal) ∈ 𝒞 the empty context

⟨–⟩ : S → 𝒞 types as contexts

– × ⟨=⟩ : 𝒞 × S → 𝒞 context extension

e.g. any cartesian category

Cartesian context structures

S ∈ Set the sorts, or types

𝒞 ∈ Cat the variable contexts

ε (terminal) ∈ 𝒞 the empty context

⟨–⟩ : S → 𝒞 types as contexts

– × ⟨=⟩ : 𝒞 × S → 𝒞 context extension

e.g. any cartesian category

Cartesian context structures

S ∈ Set the sorts, or types

𝒞 ∈ Cat the variable contexts

ε (terminal) ∈ 𝒞 the empty context

⟨–⟩ : S → 𝒞 types as contexts

– × ⟨=⟩ : 𝒞 × S → 𝒞 context extension

e.g. any cartesian category

contexts terms and types

x1 : τ1, …, xn : τn ⊢ t : τ

T(Γ)

S(Γ)

Term-typing structure

τΓ

presheaf of terms (in context Γ)

We consider presheaves 𝒞op → Set on a cartesian context structure (𝒞, S),
fibred over S.

presheaf of types (in context Γ)

assignment of types to terms

constant presheaf of types

T(Γ)

S

Term-typing structure

τΓ

presheaf of terms (in context Γ)

We consider presheaves 𝒞op → Set on a cartesian context structure (𝒞, S),
fibred over S.

assignment of types to terms

Terms with a specified type

NB. The fibre Tσ is the set of terms with type σ.

Tσ T

1 S
σ

τpb

 V = ⨿ y⟨σ⟩

 S

Presheaf of variables

ν

For any context Γ ∈ 𝒞, V(Γ) is the set of variables in Γ.

σ∈S

def

contexts terms and types

x1 : τ1, …, xn : τn ⊢ t : τ

Models of simple type theory

contexts terms and types

x1 : τ1, …, xn : τn ⊢ t : τ

Models of simple type theory

algebraic structure

Models of simple type theory

Γ ⊢ op(t) : Op(τ)

term operators

τ → σ | τ × σ | T(τ) | ...

type operators

(t1, t2) | π1 t | t1 t2 | λ(x) t | ...

Algebraic structure on types

Type structure is as in universal algebra. For instance, the following operators

τ → σ | τ × σ | T(τ) | U

induce a signature endofunctor on Set

Σty = X ↦ X2 + X2 + X + 1

the algebras for which are sets S with the appropriate structure

[⟦ →⟧, ⟦×⟧, ⟦T⟧, ⟦U⟧] : Σty S → S

(NB. These signature functors are polynomial.)

How should we define the algebraic structure on terms?

Natural deduction rules present algebraic structure

Polynomials present natural deduction rules

How should we define the algebraic structure on terms?

Natural deduction rules present algebraic structure

Polynomials present natural deduction rules

How should we define the algebraic structure on terms?

Natural deduction rules present algebraic structure

Polynomials present natural deduction rules

Polynomials & polynomial functors

In a locally cartesian-closed category ℰ, a polynomial is a diagram:

The polynomial functor associated to the polynomial is given by:

Σh Πg f* : ℰ/A ⟶ ℰ/D

A ⟵ B ⟶ C ⟶ D
f g h

We will consider polynomials in Psh(𝒞), inducing polynomial functors
Psh(𝒞)/S → Psh(𝒞)/S, where (𝒞, S) is a cartesian context structure with
algebraic structure ΣtyS → S.

Let P be a polynomial in Psh(𝒞). Algebras for the corresponding polynomial
functor are bundles τ : T → S together with morphisms as in the following.

FP() ⟶ ()
T

S
τ

T

S
τ

Polynomials & polynomial functors

⟦P⟧

Algebraic structure & natural deduction

Γ ⊢ a : A Γ ⊢ b : B

Γ ⊢ pair(a, b) : Prod(A, B)
Prod-ɪɴᴛʀᴏ

S ⟵ S × S + S × S ⟶ S × S ⟶ S

Algebraic structure & natural deduction

Γ ⊢ a : A Γ ⊢ b : B

Γ ⊢ pair(a, b) : Prod(A, B)
Prod-ɪɴᴛʀᴏ

two type metavariables

A B
in Psh(𝒞)

S ⟵ S × S + S × S ⟶ S × S ⟶ S

Algebraic structure & natural deduction

Γ ⊢ a : A Γ ⊢ b : B

Γ ⊢ pair(a, b) : Prod(A, B)
Prod-ɪɴᴛʀᴏ

output sort

⟦Prod⟧

in Psh(𝒞)

Algebraic structure & natural deduction

Γ ⊢ a : A Γ ⊢ b : B

Γ ⊢ pair(a, b) : Prod(A, B)
Prod-ɪɴᴛʀᴏ

two hypotheses

Γ ⊢ a : A Γ ⊢ b : B

S ⟵ S × S + S × S ⟶ S × S ⟶ S
⟦Prod⟧

in Psh(𝒞)

Algebraic structure & natural deduction

Γ ⊢ a : A Γ ⊢ b : B

Γ ⊢ pair(a, b) : Prod(A, B)
Prod-ɪɴᴛʀᴏ

S ⟵ S × S + S × S ⟶ S × S ⟶ S

A' B'

A B
∇2

⟦Prod⟧

in Psh(𝒞)

Algebraic structure & natural deduction

Γ ⊢ a : A Γ ⊢ b : B

Γ ⊢ pair(a, b) : Prod(A, B)
Prod-ɪɴᴛʀᴏ

S ⟵ S × S + S × S ⟶ S × S ⟶ S
∇2

⟦Prod⟧[π1, π2]

A B
in Psh(𝒞)

Algebraic structure & natural deduction

Γ ⊢ a : A Γ ⊢ b : B

Γ ⊢ pair(a, b) : Prod(A, B)
Prod-ɪɴᴛʀᴏ

S ⟵ S × S + S × S ⟶ S × S ⟶ S
∇2

⟦Prod⟧[π1, π2]

A B
in Psh(𝒞)

Algebraic structure & natural deduction

S ⟵ S × S + S × S ⟶ S × S ⟶ S
∇2

⟦Prod⟧[π1, π2]

T × T T

S × S S

⟦pair⟧

⟦Prod⟧

τ × τ τ

polynomial

functor algebra

Γ ⊢ a : A Γ ⊢ b : B

Γ ⊢ pair(a, b) : Prod(A, B)
Prod-ɪɴᴛʀᴏintroduction rule

in Psh(𝒞)

Binding algebraic structure & natural deduction

Γ, x : A ⊢ t : B

Γ ⊢ abs(x : A . t) : Fun(A, B)
Fun-ɪɴᴛʀᴏ

Binding algebraic structure & natural deduction

Γ, x : A ⊢ t : B

Γ ⊢ abs(x : A . t) : Fun(A, B)
Fun-ɪɴᴛʀᴏ

S ⟵ V × S ⟶ S × S ⟶ S

two type metavariables

A B
in Psh(𝒞)

Binding algebraic structure & natural deduction

Γ, x : A ⊢ t : B

Γ ⊢ abs(x : A . t) : Fun(A, B)
Fun-ɪɴᴛʀᴏ

S ⟵ V × S ⟶ S × S ⟶ S

output sort

⟦Fun⟧

in Psh(𝒞)

Binding algebraic structure & natural deduction

Γ, x : A ⊢ t : B

Γ ⊢ abs(x : A . t) : Fun(A, B)
Fun-ɪɴᴛʀᴏ

S ⟵ V × S ⟶ S × S ⟶ S

one variable one term

A B

⟦Fun⟧

in Psh(𝒞)

Binding algebraic structure & natural deduction

Γ, x : A ⊢ t : B

Γ ⊢ abs(x : A . t) : Fun(A, B)
Fun-ɪɴᴛʀᴏ

S ⟵ V × S ⟶ S × S ⟶ S

types of variables
⟦Fun⟧ν × id

in Psh(𝒞)

Binding algebraic structure & natural deduction

Γ, x : A ⊢ t : B

Γ ⊢ abs(x : A . t) : Fun(A, B)
Fun-ɪɴᴛʀᴏ

S ⟵ V × S ⟶ S × S ⟶ S
ν × id ⟦Fun⟧π2

A B

term sort

in Psh(𝒞)

Binding algebraic structure & natural deduction

⨿ TB(Γ · A) T(Γ)

S × S S

⟦abs⟧Γ

⟦Fun⟧Γ

τΓ

S ⟵ V × S ⟶ S × S ⟶ S
ν × id ⟦Fun⟧

A, B ∈ S

π

in Psh(𝒞)

π2

Γ, x : A ⊢ t : B
Fun-ɪɴᴛʀᴏ

Γ ⊢ abs(x : A . t) : Fun(A, B)

polynomial

functor algebra

introduction rule

Algebraic structure & natural deduction

The natural deduction rules corresponding to introduction/elimination can be
described by a second-order arity (describing the typing and binding data for
each argument).

Each second-order arity induces a polynomial in Psh(𝒞).

The algebras for their associated polynomial functors are presheaves with the
corresponding (typed & binding) term structure.

We can collect the arities into a term signature Σtm, which itself induces a
polynomial.

(NB. We're using the same notation for a signature and the polynomial functor
it induces.)

contexts terms and types

x1 : τ1, …, xn : τn ⊢ t : τ

Models of simple type theory

algebraic structure

Model homomorphisms

h : S → S' a Σty-algebra homomorphism

H : 𝒞 → 𝒞' a structure-preserving functor

f : T → H⭑(T') a morphism in Psh(𝒞)/S preserving the
Σtm-algebra structure

(S, 𝒞, ε, ⟨–⟩, – × ⟨=⟩, T, τ, ⟦–⟧ty, ⟦–⟧tm) ⟶ (S', 𝒞', ε', ⟨–⟩', – × ⟨=⟩', T', τ', ⟦–⟧'ty, ⟦–⟧'tm)

Model homomorphisms

h : S → S' a Σty-algebra homomorphism

f : T → H⭑(T') a morphism in Psh(𝒞)/S preserving the
Σtm-algebra structure

ΣtyS

S S'h

ΣtyS'
Σtyh

ΣtmT

T 𝖍(T')f

Σtm𝖍(T')
Σty f

𝖍(Σ'tmT')

where 𝖍 = h*(– H)

Syntactic models of simple type theory

For any given term and type signature, we want a model of simple type theory
freely generated by the syntax.

The model freely generated by the syntax is exactly the initial model.

Since we have no type dependency, we can construct the initial model
piecewise.

Σty Σtm syntactic model

Initial models of simple type theory

Initial models of simple type theory

● _S_ initial Σty-algebra

● as in universal algebra

Initial models of simple type theory

● _S_ initial Σty-algebra

● as in universal algebra

● _(𝒞, ε)_ free cartesian category on _S_

● concretely, the opposite of the comma category

● (𝔽 → Set) ↓ (𝟙 → Set)S

Initial models of simple type theory

● _S_ initial Σty-algebra

● as in universal algebra

● _(𝒞, ε)_ free cartesian category on _S_

● concretely, the opposite of the comma category

● (𝔽 → Set) ↓ (𝟙 → Set)

● _(T, τ)_ initial Σtm-algebra

● using Adámek's initial algebra construction

S

There's one last thing...

Substitution

Γ ⊢ t [u/x] : τ

???

Substitution

Γ ⊢ t [u/x] : τ

an algebraic operation on terms

Substitution

Γ, x : A ⊢ t : B Γ ⊢ u : A

Γ ⊢ subst(x : A . t, u) : B
subst

Γ, x : A ⊢ var(x) : A
var

Substitution

Γ, x : A ⊢ t : B Γ ⊢ u : A

Γ ⊢ subst(x : A . t, u) : B
subst

Γ, x : A ⊢ var(x) : A
var

S ⟵ 0 ⟶ V ⟶ S
ν

S ⟵ V × S + S × S ⟶ S × S ⟶ S
ν × id + id π2[π2, π1]

Substitution

Γ, x : A ⊢ t : B Γ ⊢ u : A

Γ ⊢ subst(x : A . t, u) : B
subst

Γ, x : A ⊢ var(x) : A
var

subject to equational laws…

Initial models of simple type theories with substitution

Σty Σtm
syntactic model

with substitution

Initial models of simple type theories with substitution

Σty

Σtm
syntactic model

with substitution

Σsubst

Q. What is a simple type theory?

A. An initial model

(ℂ, T ⟶ S, ⟦-⟧ty, ⟦-⟧tm + subst)

A partial answer

Q. What is a simple type theory?

A. An initial model

(𝒞, T ⟶ S, ⟦-⟧ty, ⟦-⟧tm + subst)
τ

A partial answer

Q. What is a simple type theory?

A. An initial model

(𝒞, T ⟶ S, ⟦-⟧ty, ⟦-⟧tm + subst)
τ

A partial answer

We can now construct the classifying category and equational
logic...

Conclusion

● Models of simple type theory consist of structures for contexts, typed
terms and algebraic structure.

● Natural deduction rules that present simple type theories can themselves
be presented by polynomials.

● The initial model of simple type theory is the syntactic model of the type
theory, and can be constructed explicitly with a free algebra construction.

● We can construct the syntactic model with substitution, from which we
can derive a classifying category, demonstrating that the type theory is its
internal language.

